Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces.

نویسندگان

  • I Francolini
  • P Norris
  • A Piozzi
  • G Donelli
  • P Stoodley
چکیده

In modern medicine, artificial devices are used for repair or replacement of damaged parts of the body, delivery of drugs, and monitoring the status of critically ill patients. However, artificial surfaces are often susceptible to colonization by bacteria and fungi. Once microorganisms have adhered to the surface, they can form biofilms, resulting in highly resistant local or systemic infections. At this time, the evidence suggests that (+)-usnic acid, a secondary lichen metabolite, possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium. Since lichens are surface-attached communities that produce antibiotics, including usnic acid, to protect themselves from colonization by other bacteria, we hypothesized that the mode of action of usnic acid may be utilized in the control of medical biofilms. We loaded (+)-usnic acid into modified polyurethane and quantitatively assessed the capacity of (+)-usnic acid to control biofilm formation by either S. aureus or Pseudomonas aeruginosa under laminar flow conditions by using image analysis. (+)-Usnic acid-loaded polymers did not inhibit the initial attachment of S. aureus cells, but killing the attached cells resulted in the inhibition of biofilm. Interestingly, although P. aeruginosa biofilms did form on the surface of (+)-usnic acid-loaded polymer, the morphology of the biofilm was altered, possibly indicating that (+)-usnic acid interfered with signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water Soluble Usnic Acid-Polyacrylamide Complexes with Enhanced Antimicrobial Activity against Staphylococcus epidermidis

Usnic acid, a potent antimicrobial and anticancer agent, poorly soluble in water, was complexed to novel antimicrobial polyacrylamides by establishment of strong acidic-base interactions. Thermal and spectroscopic analysis evidenced a molecular dispersion of the drug in the polymers and a complete drug/polymer miscibility for all the tested compositions. The polymer/drug complexes promptly diss...

متن کامل

Controlled-release Antimicrobials for Preventing Biofilm Formation in Food and Medical Applications

OF THE THESIS CONTROLLED-RELEASE ANTIMICROBIALS FOR PREVENTING BIOFILM FORMATION IN FOOD AND MEDICAL APPLICATIONS By LINDA E. ROSENBERG Thesis Director: Dr. Michael Chikindas Bacterial biofilms generally are more resistant to stresses as compared to free planktonic cells. Therefore, the discovery of antimicrobial stress factors that have strong inhibitory effects on bacterial biofilm formation ...

متن کامل

Polysorbate 80 inhibition of Pseudomonas aeruginosa biofilm formation and its cleavage by the secreted lipase LipA.

Surface-associated bacterial communities known as biofilms are an important source of nosocomial infections. Microorganisms such as Pseudomonas aeruginosa can colonize the abiotic surfaces of medical implants, leading to chronic infections that are difficult to eradicate. Our study demonstrates that polysorbate 80 (PS80), a surfactant commonly added to food and medicines, is able to inhibit bio...

متن کامل

Evaluation of the Effect of Zinc Oxide Nanoparticles on the Inhibition of Biofilm formation of standard Pathogenic Bacteria and Comparison with Drug Resistant Isolates

Introduction: Traditional medicines cannot adequately reach the target tissues, due to their large size; therefore, the attention of researchers has been drawn to the use of nanomedicines. In fact, the use of biological active compounds loaded on the surface of nanoparticles can be effective the in the promotion of their antimicrobial activity. In the earlier studies, it was demonstrated that b...

متن کامل

اصلاح ابرآبدوست و آنتی باکتریال پلیمر پلی‌اورتان به‌کمک نانوذرات دی‌اکسید تیتانیوم به‌منظور استفاده در ابزار پزشکی

Polyurethane polymer plays an important role in health care, and it is widely used in medical devices and instruments. However, the low biocompatibility and biofilm formation on the surface can be regarded as a challenging issue. Engineering the wetting capability of the surface is an effective way to increase the biodegradability of polymer surfaces with sufficient bulk properties. In this stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 48 11  شماره 

صفحات  -

تاریخ انتشار 2004